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from room temperature up to their melting points and 
from this, the vibrational amplitudes of the individual 
ions calculated and estimates made of parameters 
arising from the non-Gaussian distribution of  the 
thermal displacements at high temperatures. 
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Successive Refinement of Structures with Data of Increasing Resolution: 
A Theoretical Study for Triclinic Space Groups 
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The method of least squares could be used to refine an imperfectly related trial structure by adoption of 
one of the following two procedures: (i) using all the observed at one time or (ii) successive refinement 
in stages with data of increasing resolution. While the former procedure is successful in the case of trial 
structures which are sufficiently accurate, only the latter has been found to be successful when the 
mean positional error (i.e. (IArl)) for the atoms in the trial structure is large. This paper makes a theoretical 
study of the variation of the R index, mean phase-angle error, etc. as a function of (IArl) for data 
corresponding to different resolutions in order to find the best refinement procedure [i.e. (i) or (ii)] 
which could be successfully employed for refining trial structures in which (IArl) has large, medium and 
low values. It is found that a trial structure for which the mean positional error is large could be refined 
only by the method of successive refinement with data of increasing resolution. 
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1. Introduction 

Ramachandran & Shamala (1976) have recently 
described a new method of determining crystal 
structures, which consists of first obtaining a trial 
structure from an a priori knowledge of the molecular 
structure* by packing analysis using contact criteria 
(Ramachandran, Ramakrishnan & Sasisekharan, 1963) 
and then refining the trial structure thus obtained by  
a least-squares (hereinafter LS) method with an 
increasingly larger number of reflections of higher 
(sin 8)/2 values in successive stages. Using this method 
they have solved the crystal structure of the cyclic 
hexapeptide cyclo(-Gly-Tyr-Gly-)2 containing 41 non- 
hydrogen atoms and belonging to the triclinic space 
group P1 (Shamala, 1977, hereinafter S, 1977). 
During this process the following features regarding 
this method were observed (see S, 1977 for fuller 
details). (i) Though the packing analysis using contact 
criteria gave a few possible trial structures, only one 
of these, referred to for convenience as the correct 
trial structure, could be eventually refined. (ii) From 
among the different trial structures suggested by the 
packing analysis, the correct one could be identified 
from the values of the R index and from a study 
of the behaviour of the LS refinement of the different 
possible alternatives using a few hundred reflections 
with low (sin 0)/~ values. (iii) Even though the correct 
trial structure obtained from packing analysis had a 
mean coordinate error (i.e. (IArl>, the mean value 
of the magnitudes of the positional errors of the atoms 
in the asymmetric unit) as large as 0.8 ,/~, it could be 
eventually refined to a high degree of accuracy pro- 
vided the LS refinement was carried out in stages, 
starting with low-resolution data, and subsequently 
increasing the number of higher-angle reflections in 
each stage in a stepwise manner. (iv) Even the correct 
trial structure for which (IArl> = 0.8 /k could not 
be refined by the conventional LS method (i.e. the LS 
method of refining a trial structure using all the 
observed reflections within the Cu Ka limit at a time). 
These results point to the necessity of carrying out a 
detailed theoretical study of the method of successive 
refinement with data of increasing resolution (herein- 
after the SRDIR method) when the value of (IArl> 
for the trial structure is as large as 0.8 A. Such a study 
can evidently be carried out by analysing how closely 
(on the average) the calculated values of the structure 
factor magnitudes and phase angles of structure factors 
of a trial structure would agree with the corresponding 
true values of the crystal structure for data of different 
resolutions. These, in turn, can be studied by con- 
sidering the behaviour of the overall values of the 
R index and mean phase-angle error E(lOCl) [where 

* This could be established to an accuracy  needed for the present 
method from stereochemical  considerations and from the results o f  
studies such as NMR.  

0 c : Cttrue - -  tteal; s e e  Parthasarathy & Parthasarathi 
(1974) - hereinafter PP (1974)] as functions of (IArl> 
for data with different resolutions. In the case of a 
centrosymmetric crystal the quantity analogous to 0 c 
is s c which is defined as the product of the signs of 
the calculated and true structure factors of a given 
reflection (PP, 1974). Since s c = +1 for those 
reflections whose signs are correctly determined by the 
trial structure, for the analysis of the present 
problem in the centrosymmetric case we have to study 
the variation of the overall value of the probability 
that s ~ = +1 as a function of (Izlrl> for data with 
different resolutions. 

Another related problem of interest arises in 
connection with the Patterson function approach to 
structure analysis via the Nordman vector-space search 
(Nordman, 1966). This procedure could be applied 
even when only a part of the molecular structure is 
known (e.g. a rigid group of atoms forming a part of 
the molecule) and the mean positional error for the trial 
structure obtained by this procedure would in general 
be less than 0.4 A. In connection with this method 
it is natural to ask whether or not the conventional 
LS method would be successful for refining an incom- 
plete trial structure for which (IArl > ___ 0.4 A. We shall 
analyse this problem as well in this paper. 

We shall use the abbreviations C and NC for the 
terms centrosymmetric and non-centrosymmetric 
respectively. We shall use the symbol S to denote 
(sin 0)/;I. and tr 2 to denote the fractional contribution 
to the local mean intensity from the atoms in the trial 
structure relative to all the atoms in the unit cell of the 
given structure. In a structure with similar atoms, a 2 
is practically equal to the ratio of the number of atoms 
in the unit cell of the trial structure to that of the true 
structure. Also 2S(=H) denotes the length of the 
reciprocal-lattice vector H. 

For convenience in our discussion we shall use the 
symbol X to stand for any one of the quantities: 
the normalized discrepancy index R~(F) (Srinivasan & 
Ramachandran, 1965), the cumulative function 
N(I 0el), the expectation value E(I 0~1) or the probability 
P(s ~ = + 1)[hereinafter P(+)]. In this paper we shall 
characterize the resolution by using S even though 
1/(2S) is the quantity usually employed in protein 
crystallography. We shall also denote the maximum 
value of S for the reflections used in the refinement by 
area  x. Thus the larger the value of Smax, the greater 
the resolution obtained. X is a function of S and its 
overall value for the data for which 0 < S < Smax, 
denoted by (X)sma, could be  evaluated theoretically 
from the expression (Parthasarathi & Parthasarathy, 
1974) 

Srnax 

(X}sm, ~ - S3 X S  2 dS. 
max 
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Since the largest possible value of S m a  x for Cu Ka 
radiation is 0.6485, the quantity (X)0.6485 would be 
denoted by (X)c,K,,. 

2. Theoretical considerations 

Consider a triclinic crystal (C or NC) containing N 
atoms in the unit cell of which P atoms are known 
(these P atoms constitute the trial structure). Let 
(IArl) be the mean positional error for the atoms in 
the trial structure. 

= 

x {1+ 

where 

Non-centrosymmetric case 

In the case of an NC crystal the probability density 
function of 0 e has been shown to be (PP, 1974) 

zr(1 - oa z cos z 0 e) 

1 -- °2 cOS2091/2 + sin-~ (OA COS 0 ~ (I) 

OA = O~ exp(--zc3(IArl) 2 $2), % = (1 -- oJ) 'a. (2) 

From (1) we can obtain the expectation value and 
cumulative function of 0 c using the formula 

E(1Oel) = _i Oe P(I 0Cl) doc (3) 
0 

N(IOel) = J P(1Ocl) dO e. (4) 
0 

The theoretical expression for the conventional R index 
in the normalized form has been shown to be (PP, 
1975) 

3oJ~  1 3. zFI (---~,---~, 1 ; °J x 2) 
R,( r )=  T o (5) 

Centrosymmetric case 

The theoretical expression for P(+) for this case has 
been show to be (PP, 1974) 

1 
P(+) = ½ + - sin -~ (aA) (6) 

7~ 

and that for R~(F) to be (Srinivasan & Ramachandran, 
1965) 

R,(F) = [2(1 + oA)I 1/2 + [2(1 --OA)] u 2 -  2. (7) 

Equations (3) to (7) show that R,(F), P(+), E(10q) 
and N(fOcl) are functions of OA which is, in turn, a 
function of the three quantities: a t, (IArl) and S 
[see equation (2)]. Of these o, and (IArl) are fixed 

quantities for a given trial structure. In the presence of 
coordinate errors (i.e. (IArl) > 0) the quantity a A 
for a given trial structure is a systematically decreasing 
function of S [see (2)]. Thus the quantities X are in 
general expected to vary markedly as a function of S. 
For practical applications we are interested only in 
their overall values for the given data (i.e. ( X ) s ) .  

¢, max 2 Such an overall value of X for given values oI a~, 
(IArl) and Sma x can be obtained by first substituting 
the appropriate equation of (3)-(7) in the equation 
given at the end of § 1, and carrying out the resulting 
integration numerically. For each X, this process can 
be repeated for different values of (IAr[) by keeping 
a~ z and Sma X fixed. The whole calculation can in turn be 
repeated by varying Sins x in steps (e.g. 0.1, 0 . 1 5 , . . . ,  
0.6485) keeping a~ fixed all the while. We can thus 
obtain the variation of the overall value ( X ) s  for a 
given trial structure (i.e. a~ fixed) as a fun&~on of 
(IArl) for data with different resolutions (this is deter- 
mined by the value of Sm~x). 

3. Discuss ion  of  the theoretical results 

The method of evaluating ( X ) s  as a function of 
(IArl) for any given value of a 2 h ~  been described in 
§ 2. The variation of (X)sm~ " as a function of 
(IArl) for different fixed values of Sma x are shown 
in Figs. 1--4 for the quantities RI(F), P(+), E(lOCl) 
and N(10q)respectively. We shall presently analyse 
the nature of these curves in order to understand the 
characteristics of refinement by the SRDIR method. 
We shall consider two types of trial structures: (a) an 
imperfectly related complete type (i.e. a~ = 1) and 
(b) an imperfectly related incomplete type [i.e. a~ < 1; 
see Srinivasan & Parthasarathy (1976) for the termin- 
ology]. We shall take 0.6 as a typical value of a~ for 
an incomplete trial structure and this corresponds to 
the case when 60% of the atoms in the unit cell are 
known. 

The case of  an imperfectly related complete model 

We shall take 1.0 A as a typical value of (JArl) 
and study the effect of refinement of such a model 
(i.e. (IArl) -~ 0 starting from 1.0 A) on ( X ) s  
when Sma x assumes different fixed values. Followinm~ x 
the example of the hexapeptide (Ramachandran & 
Shamala, 1976) we shall take 0.25 as the value of 
Sma X for the starting data set. 

(i) Behaviour of  (R~(F))sm, x. From Fig. l(a) it is 
clear that in the C case, even when the value of 
(IArl) is as high as 1.0 A, the value of (Rl(F))0.25 
is 75.9%, which is less than the value 82-8% expected 
for a completely wrong structure (Wilson, 1950). 
Further as (IArl) decreases from 1.0 A, the curve 
for (R~(F))o.25 shows a systematic decrease. However, 
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when (IArl> = 1.0 A, the value of <Rt(F)>cuK,~ is 
82.4%, which is practically the same as the value, 
82.8%, expected for a completely wrong structure. 
Further, the curve for <R~(F)>c,~,~ is practically flat 

in the neighbourhood of the point (IArl> = 1.0 /k, 
In the NC case also the curves for <R~(F)>o.25 and 
<R~(F)>c,x~ exhibit corresponding similar features 
(Fig. l b). Thus it appears that successful refinement 
of a trial structure with mean coordinate error as 
large as 1 . 0 / k  could be achieved only by the SRDIR 

'°'E . . . . .  met, o,.r,o  ,yt, e onven,iona, 
I //~ (~~J~ / (ii) Behaviour o f  <P(+)> s,~x" It is seen from Fig. 2(a) 

! i, i,)//; O,o~Oil/~/;)~,//t.,,,,o ~/, , . v / /  o, / .~'" / / ~ [ / l / / / / o .  / is 0"62. Thus in the data f°r  which Smax = 0"25' 
the fractional number of reflections whose signs are l~ i ~°i~ correctly determined by the trial structure is 0.62, 

~ol which is well above the value 0.5, expected for a 
, completely wrong trial structure. However, when 

<lArl> = 1-0 A, the value of <P(+)>cu~ is 0.509, 
which is very close to the value 0.5 expected for a o~ o, completely wrong structure. Further, while the curve 

o 0, o~,~,,>,2 . ,~ ~o~ for <P(+)>cux~ is practically fiat in the neighbourhood 
~o of the point <lArl> = 1.0 A, that for <P(+))0.25 shows 

(a) ~o[- . . . . . . . . .  , a systematic increase as <lArl> decreases from 1.0 A. o~o~~  

03 

t / / / / / / /  / ,.t / / / / / / /  / 

Fig. 1. <R~(F)>sma~aS a f u n c t i o n  of<lArl> f o r  d i f f e r e n t  f i x e d  v a l u e s  o a  * 3~1o ' o,4 ' o!8 ' 12 ' I'6 ' 2.0~ 

of Sma x. The number near each curve denotes the value of <~.~>~ 
Sm~ ~. Curves in (a) and (b) are for an imperfectly related <,~,1> - 
complete trial structure with a I = 1.0, while those in (c) and (a) (b) 
(d) are for an imperfectly related incomplete trial structure Fig. 3. <E(lOcl))Sm,xaSafunctionof<lArl)fordifferentfixedvalues 
with a~ = 0.6. While curves in (a) and (c) are for the C of Sin. ~ for the NC case. Curves in (a) and (b) are for the 
case, those in (b) and (d) for the NC case. The value of cases a I = 1.0 and 0.6 respectively. The number near each 
(R ~(F))s~ ~ is given as a percentage, curve denotes the value of  Sm,x. 

I 60 

£ 
70 

v 

04 0.8 12 16 20Z~ 

(a) 

801 , , . . . .  , 

I 7" ~ o ,  , , , 
0 04 08  

O) 
Fig. 2. (P(+)>sm~ as a function of <lArl> for different fixed values 

of S for the C case. Curves in (a) and (b) are for the cases 
01 =ma[.0 and 0.6 respectively. The number near each curve 
denotes the value of  Sm~x. 

IOO 4 5  • , . . . . . . .  
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(a) (6) 
Fig. 4. ( N ( 2 0 ° ) > s , ~ a s  a function of  <lArl > for different fixed values 

of Sma x for the NC case. Curves in (a) and (b) are for the cases 
a I = 1.0 and 0.6 respectively. The number near each curve 
denotes the value of Sin. x. 



516 SUCCESSIVE REFINEMENT OF STRUCTURES 

This again points to the necessity of adopting the 
SRDIR method for a successful refinement of a trial 
structure for which (IArl) is as large as 1.0 A. 

(fii) Behaviour of(E(lOel))s  . It is seen from Fig. 
3(a) that when (IArl) = 1.0 A t~a~ value of (E(I 0el))0.25 
is 68 ° while that of (E(18el))cur~ is 88 °. The latter 
is very close to 90 °, which is the value expected for 
a completely wrong trial structure, while the former is 
much less than the value expected for a com- 
pletely wrong model. Further, while the curve for 
(E(lOCl)>cuK~ is practically fiat in the neighbourhood 
of (IArl) = 1.0 X, that for (E(I 0c1))0.25 systematically 
decreases as (IArl) decreases from 1.0 A. Thus, it 
appears that to refine successfully a trial structure with 
large mean coordinate error one must use the SRDIR 
method. 

(iv) Behaviour o f  ( N ( 2 0 ° ) ) s .  From Fig. 4(a) it is 
seen that when (IArl) = 1.0/f,, (N(20o))0.25 -- 0.208 
and (N(20°))cur,~ = 0.118. Thus while the former 
value is well above the value 0.111 expected for a 
completely wrong trial structure, the latter is very close 
to 0.111. Further, while the curve for (N(20°))0.25 
systematically increases as (IArl) decreases from 
1.0/~, that for (N(20°))cux,~ is practically fiat in the 
neighbourhood of the point ( Id r l )  = 1.0 /i,. This 
shows that even though the value of (N(20°))o.25 is 
as low as 0.208 it could increase as the structure 
is refined. Thus it is again seen that the SRDIR 
method should be used for the successful refinement 
of trial structures for which (IArl) is as large as 
1.0 !I~. 

So far we have considered the case of a trim 
structure for which the value of (IArl) is quite high, 
say 1.0 ,/k. For the sake of completeness, we shall 
examine the case of a trial structure for which the 
value of (IArt) is neither high nor low (say, 0.4 A), 
in order to find out whether or not such a structure 
could, in principle, be refined by the conventional LS 
method. From a similar study of the nature of the 
curves for (X)sma x for different fixed values of Sma x in 
the neighbourhood of the point (IArl) - 0.4 A (Figs. 
1 to 4) it appears that when the positions of the 
atoms of the trial structure are determined to an 
accuracy better than 0.4 /~ on the average, the trial 
structure could in general be refined by the conven- 
tional LS method. It is also relevant to note here that 
when the trial structure is sufficiently accurate (say, 
(IArl) < 0.2 /~), the change in the value of ( X ) s  
for a given small decrease in the value of (IArl) (i?~. 
the slope) is greatest when Sma x = 0.6485. Thus it 
follows that for refining such a trial structure the 
conventional LS method would be preferable to the 
SRDIR method. 

The case o f  an imperfectly related incomplete model 

We shall take 0.4 A and 0.6 as typical values of 

(IArl) and tr 2 respectively and study the effect of 
refinement of such an incomplete trial structure on 
( X ) s  for different fixed values of Sma x. A study of 
the c~:ves for tr~ = 0.6 in Figs. 1-4 shows that they 
are quite similar to the corresponding curves for 
the case a 2 = 1.0 considered earlier. Thus the results 
obtained for the case of an imperfectly related complete 
model could be expected broadly to hold good for the 
present case as well. 

4. Conclusion 

This study indicates that an imperfectly related trial 
structure which is of either the complete or incomplete 
type could be refined only by the SRDIR method 
whenever the mean positional error (IArl) for the 
atoms in the trial structure is large (_~l.0 A, say). 
The conventional LS method could be successful 
whenever the mean positional error has medium value 
(20 .4  A, say). For refining a trial structure which is 
sufficiently accurate, (i.e. (IArl) < 0.2 A), the conven- 
tional LS method appears to be preferable to the 
SRDIR method. 
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